Efficient Computation of Gradients and
Jacobians by Dynamic Exploitation of Sparsity in
Automatic Differentiation”

Christian H. Bischof,! Peyvand M. Khademi,' Ali Bouaricha, and
Alan Carle?

Argonne Preprint MCS-P519-0595

Abstract. Automatic differentiation (AD)is a technique that augments computer codes with statements
for the computation of derivatives. The computational workhorse of AD-generated codes for first-order
derivatives is the linear combination of vectors. For many large-scale problems, the vectors involved in this
operation are inherently sparse. If the underlying function is a partially separable one (e.g., if its Hessian
is sparse), many of the intermediate gradient vectors computed by AD will also be sparse, even though the
final gradient is likely to be dense. For large Jacobians computations, every intermediate derivative vector is
usually at least as sparse as the least sparse row of the final Jacobian. In this paper, we show that dynamic
exploitation of the sparsity inherent in derivative computation can result in dramatic gains in runtime and
memory savings. For a set of gradient problems exhibiting implicit sparsity, we report on the runtime
and memory requirements of computing the gradients with the ADIFOR (Automatic DIfferentiation of
FORtran) tool, both with and without employing the SparsLinC (Sparse Linear Combinations) library,
and show that SparsLinC can reduce runtime and memory costs by orders of magnitude. We also compute
sparse Jacobians using the SparsLinC-based approach—in the process, automatically detecting the sparsity
structure of the Jacobian—and show that these Jacobian results compare favorably with those of previous
techniques that require a priori knowledge of the sparsity structure of the Jacobian.

Key words. Automatic Differentiation, Sparsity, Partial Separability, Sparse Jacobians, Large-Scale
Optimization, MINPACK-2, ADIFOR, SparsLinC.

1 Introduction

The numerical computation of gradients and Jacobians is an important step in the solution
of many nonlinear problems, such as numerical optimization, mesh computations, nonlinear
least squares, and systems of differential and algebraic equations. For such problems, the
derivative computation is often a major contributor to the overall cost, in terms of both
runtime and memory requirements.

*This work was supported by the Mathematical, Information, and Computational Sciences Division
subprogram of the Office of Computational and Technology Research, U.S. Department of Energy, under
Contract W-31-109-Eng-38, by the National Aerospace Agency under Purchase Order 1.25935D and Co-
operative Agreement No. NCCW-0027, and by the National Science Foundation, through the Center for
Research on Parallel Computation, under Cooperative Agreement No. CCR-9120008.

TMathematics and Computer Science Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne,
IL 60439, (bischof,khademi,bouarich)@mcs.anl.gov.

{Center for Research on Parallel Computation, Rice University, 6100 S. Main St., Houston, TX 77251,
carle@cs.rice.edu.

Automatic differentiation (AD) is a technique by which codes for the computation of
functions are augmented to produce codes for the computation of desired derivatives of those
functions. AD relies on the fact that every function is executed on a computer as a sequence
of elementary operations, such as + and —, and intrinsics, such as sin and log. By successive
applications of the chain rule to the composition of those elementary operations, derivatives
can be computed exactly (up to machine roundoff) and in a completely mechanical fashion.
For a detailed description of AD, see [20].

Previous studies have shown that AD is a powerful technique for computing derivatives.
Accuracy and runtime efficiency of AD are superior to difference approximations, and the
reliability, flexibility and development-time efficacy of AD surpass those of hand-coding
approaches. For example, the AD tool ADIFOR (Automatic DIfferentiation of FORtran)
[5, 7, 8] has been used to generate derivative codes for many applications in areas such as
large-scale optimization [2, 14], computational fluid dynamics [9, 10, 15], weather modeling
[26], and groundwater modeling [11]. Other examples of available AD tools are Odyssée
[27] and GRESS [23] for Fortran, and ADOL-C [21] and ADIC [13] for C programs.

The forward and reverse modes are the two basic modes of AD, and are distinguished
by the manner in which the chain rule is applied for propagating derivatives. This basic
difference impacts the computational complexity and flexibility of each mode. The forward
mode, despite its flexibility and the predictability of its memory requirements, has thus
far been considered impractical for the computation of large-scale gradients, because of its
runtime complexity. In this paper, we consider only the forward mode, and show that in
some cases this perceived limitation of the forward mode can be overcome by the exploitation
of sparsity.

Computationally, the most expensive kernel of derivative codes generated by primarily
forward mode tools such as ADIFOR and ADIC is a vector linear combination (VLC):

k
w= Zawi, (1.1)
=1

where w and the v; are gradient vectors, the a; are scalar multipliers, and & is the arity. If
we assume that the gradient vectors are all of same size, say d, then a computation com-
posed primarily of invocations of (1.1), implemented as a dense vector loop, would have
computational complexity linear in d, in terms both of runtime and memory requirements
(this type of implementation is used in the default or NONSPARSE mode of ADIFOR, exam-
ples of which we will show in Section 3). On the other hand, if the gradient vectors are
sparse, then strategies that attempt to exploit that sparsity, in terms of both the storage of
vectors and the implementation of the computation, can be expected to reduce the overall
computational complexity. For any given problem, the extent of this reduction in complex-
ity will depend not only on the efficiency of the sparse algorithm, but also on the sparsity
characteristics of the underlying function.

For many large-scale problems there is inherent sparsity in the computation of gradients
and Jacobians. In gradient computations, the scalar output function, f : R® — R, is
usually dependent on all of the inputs, resulting in a dense gradient vector g = Vf ¢ R".
However, it has been shown that if the Hessian of f is sparse, then f is partially separable

[22]; that is, f can be expressed as

o) = 3 Ao (1.2)

where m is the number of element functions fi(z), and each f;(z) is typically a function
of just a few of the components of z, implying that each ¢;(z) = % will be sparse, even
though ¢g(z) = 37", g;(x) is dense.

Sparsity in the derivative computations is likewise a salient issue in many large-scale
Jacobian computations where the final Jacobian associated with a function f: R"™ — R™
is sparse. As we will see in Section 2, the sparsity of the final derivative result implies equal
or greater potential for sparsity in the intermediate computations.

The various approaches used for exploiting sparsity in Jacobian computations can gen-
erally be grouped into two categorizes: static and dynamic. Static approaches use a priori
knowledge of the sparsity structure of the sparse Jacobian to map the Jacobian to an equiv-
alent Jacobian — referred to as the compressed Jacobian — with significantly fewer columns.
The success of the static method depends on finding a minimal number of columns, since
this number is a good approximation for the computational complexity of these methods,
as a multiplicative factor of the cost to compute the function. Coleman and Moré [17] intro-
duced an algorithm for a terse mapping based on graph-coloring heuristics, and successfully
applied this algorithm to large-scale optimization problems. Their approach applies equally
well to automatic differentiation as it does to finite differencing, and we make use of it in this
paper. Using an alternative approach, Newsam and Ramsdell [25] showed that the sparse
Jacobian can be estimated with ¢ 4+ 1 function evaluations, where ¢ is the maximum of the
number of nonzero elements in any row of the Jacobian. However, this approach requires
the solution of a system of linear equations with a potentially ill-conditioned matrix. Hence,
we decided to employ the numerically safe Coleman/Moré approach.

The dynamic approach, which can also be applied to gradient computations, involves
using dynamically allocated memory and sparse data representations for storing and pro-
cessing only the nonzero information in the derivative objects. An implementation of this
approach was introduced by Dixon, Maany, and Mohseninia [19], using the operator over-
loading capabilities of ADA, and specific to codes written in that language. For first order
derivative computations, their implementation of a sparse doublet consists of a linked list,
with each entry representing a nonzero in terms of its position in the vector, its value,
and a pointer to the next entry. A more efficient implementation was introduced by M.C.
Bartholomew-Biggs, L. Bartholomew-Biggs, and B. Christianson [3], who used a recurrent
recycling scheme for freed up dynamically-allocated memory. These and others works [18]
demonstrated the runtime efficiency of the dynamic approach for some small- to medium-
sized problems (n < 500).

The SparsLinC (Sparse Linear Combinations) library [6, 8] is a software package for ex-
ploiting sparsity in AD, using the dynamic approach. In this paper, we report on the runtime
and memory performance measures of differentiating large-scale (n < 160,000) optimization
codes with ADIFOR when interfaced with SparsLinC, and contrast these with NONSPARSE
ADIFOR results (i.e., without SparsLinC). The codes are taken from the MINPACK-2 test
set problems [1] and the molecular distance geometry class of global minimization functions
[24]. In Section 2 we look at sparsity in the context of the computation of VLCs in AD and

show how this can be exploited with SparsLinC. Computational results for the gradient and
Jacobian experiments are shown in Sections 3 and 4, respectively. Finally, we present our
conclusions in Section 5.

2 Sparsity in First-Order Derivative Computation

For large-scale problems, gradient vectors appearing in VLCs in AD computations are often
very sparse. In this section, we define sparsity in the context of AD computations, and
identify characteristic problem types where sparsity in derivative computations occurs. We
also give a brief overview of SparsLinC and show how it exploits sparsity.

2.1 Definition of Sparsity in Automatic Differentiation

To define sparsity, we first revisit some basic AD and ADIFOR definitions. All AD tools
require the user to specify, from among the program variables, the independent and depen-
dent variables; the independents being the ones with respect to which the partial derivatives
of the dependents are to be computed. In addition, ADIFOR, performs an activity analysis
pass, whereby all variables possibly lying on the dependency path from the independent to
the dependent variables are nominated as active variables (by definition, the independents
and dependents are themselves active).

A directional derivative, defined as

Ao~ f()
h—0 h

; (2.1)

is the partial derivative of an active variable along a direction vector e. In ADIFOR, the
user specifies the complete set of desired directions by means of the seed matriz. In the
simplest case, each unit direction is defined by one of the independent variables, which is
equivalent to setting the seed matrix to the identity matrix. A directional gradient vector
is defined to be the set of directional derivatives of any scalar active variable with respect
to all directions specified in the seed matrix (the term scalar active variable here refers to
active variables declared as scalars in the program and also to the individual elements of
active variables that are declared as arrays). In the context of AD, the vector operands
in (1.1) are directional gradient vectors.

In the NONSPARSE representation, a directional gradient vector V would be declared in
the derivative code as an array variable of length d, where d is the number of directions.
We denote the number of nonzeros in V' at a given point ¢ during the execution by Vi 0.
The percentage of zero entries or sparsity of V; is defined as

Vinon=
‘/t.sparsity = (1 - tT) * 100% (22)

A good measure for the overall sparsity present in a derivative computation is the median
of the sparsities of all directional gradient vectors computed during the execution of the
derivative code. We also define the umbrella term sparsity characteristics to refer to the
sparseness of all directional gradient vectors during the execution of a derivative code.
One implication of (2.2) is that d sets an upper bound on the overall sparsity in a
problem. For example, if d = 10, overall sparsity is bounded above by 90% (given that,

from the definition of active variables, usually V;,.n. > 1). This underscores a necessary
(but not sufficient) condition in terms of the practicality of a sparse solution: in order for
SparsLinC—or any other strategy for exploiting sparsity in AD—to improve the runtime
performance of derivative computation, the number of directions with respect to which we
wish to compute derivatives should be “large.” Otherwise, the directional gradient vectors
will be short, and runtime efliciences gained by exploiting sparsity will be defeated by
implementation overheads. The determination of what is considered a large sparse problem
is to a great extent dependent upon the nature of the problem.

Another important fact relating to sparsity in derivative computations is that in all
likelihood the final sparsity of the least sparse directional gradient vector corresponding to
the dependent variables sets the upper bound on the number of nonzeroes of all intermediate
directional gradient vectors during the execution. This means that the overall sparsity of the
problem may be much higher than that of the final derivative result. This fact follows from
the formation of structural merges in VLCs. The notational equation (2.3) is a depiction
of a structural merge, that is, the additive propagation of nonzero structures of the right-
hand-side vectors to the left-hand-side vector:

& &
& &
= + + (2.3)
& & &
& &

Here, the symbol <& represents a nonzero entry (zero entries are left blank), d = 5,
and the nonzero index set of the resulting left-hand-side vector is the union of index sets
of the right-hand-side vectors.* Given that a left-hand-side vector in a VLC will usually
appear as a right-hand-side vector in a subsequent VLC, it is easy to see that the impact of
the statement-level structural merge in (2.3) is that sparsity diminishes as the computation
proceeds. It is the converse of this result that motivates our work, namely, if we suspect that
the final derivative object we seek is sparse, then we can expect that all directional gradients
vectors (i.e., operands of all VLCs in the derivative computation) will be as sparse—and,
with great likelihood, more sparse.

Figure 2.1 depicts the sparsity characteristics of directional gradient vectors in the gra-
dient computation of the GL2 problem, which will be introduced in Section 3. The com-
putation involved over 30,000 VLCs. For every 250 VLCs, we gathered statistics on the
number of nonzeroes in the resultant left-hand-side vectors and plotted the minimum, max-
imum, median, and average on the graph. We note that the fact that the maximum drops
from about 2,500 nonzeroes to about 500 at around the 26,000-th VLC is not indicative of
a decrease in the number of nonzeroes of a particular vector, but rather that among the
vectors appearing on the left-hand side of the 250 VLCs previous to the 26,000-th, the one

*This discussion precludes the possibility of the occurrence of (¢) numerical zeroes resulting from exact
cancellation (e.g., a + (—a)), and (#1) zero multipliers. In our experience, exact cancellation rarely occurs in
derivative computation, and currently, SparsLinC does not check for it (i.e., numerically zero vector entries
are treated like nonzero entries). SparsLinC does, however, check for zero multipliers, and vectors with zero
multipliers are not referenced in VL.C computations.

Sparsity Charcteristics of GL 2 (n=2,500)

3000

A Minimum
1o Maximum

2500 - |3k Median

<>< Average

2000 -

1500

1000

Nonzeroes per Left-Hand-Side Vector

500

V ector Linear Combinations Performed during Execution

Figure 2.1: Sparsity of vectors on the left-hand side of vector linear combinations performed
by SparsLinC during the execution of the gradient code for GL2, n = 2,500.

with the maximum number of nonzeroes had about 500. In fact, the final gradient vector
is fully dense (with 2,500 nonzeroes).

The main conclusion to be drawn from Figure 2.1 is that the median and average curves
are always far below 2,500, the maximum vector size, thus implying that significant savings
could be achieved in the computation of VLCs by exploiting sparsity. We note that the
overall sparsity inherent in a derivative computation is largely a function of sparsity present
in intermediate computations, and not so much the sparsity of the final result.

2.2 Characteristic Sparse Derivative Problems

Partially separable functions and their gradients arise in many computational contexts, in
particular in large-scale optimization problems. In Section 1 we defined these functions (1.2)
as a summation of element functions. Since each element function depends only on very
few components of the independent variable, each corresponding directional gradient vector
is sparse, and typically, the only dense vector present in the computation is the gradient of
the partially separable function itself (the example in Figure 2.1 is one such case).

In terms of how to exploit the sparsity in these gradient computations, it is important
to note that the mathematical notion of separability defined in (1.2) may not always be
reflected in terms of how the code for a partially separable function is written (i.e., the
separability may not be reflected in the code structure). Though in some cases the ex-
plicit reformulation of the code for such functions is a viable alternative leading to effcient
derivative computations of equivalent compressed Jacobians (see Section 4.1 and also [4]),
in other cases, an algorithmic approach that transparently (i.e., without the need to rewrite
code) exploits this “under-the-rug” sparsity may be preferable. Our results in Section 3 will
demonstrate the efficiency of computing gradients of partially separable functions using the
latter approach as implemented in SparsLinC.

Large sparse Jacobian problems occur frequently in many contexts, and computing them
without effective sparse strategies either has been prohibitively expensive or has depended
on a priori knowledge of the closure of the sparsity patterns of the Jacobian, where closure
denotes the union of the sparsity patterns for all values of the independent variables. In
contrast to partially separable functions where some gradient vectors may be dense, the
AD computation of sparse Jacobians, by definition, involves only sparse directional gradient
vectors.

In Section 4 we briefly review the compressed Jacobian approach, which has previously
been used [17, 2] as an effective strategy for computing sparse Jacobians in cases where
the closure sparsity pattern is known. We then present our results of computing sparse
Jacobians with known closures using the ADIFOR/SparsLinC approach, and contrast these
results with those based on the compressed Jacobian method.

2.3 Exploiting Sparsity with SparsLinC

Our intent is to take advantage of inherent sparsity in directional gradient vectors to reduce
both memory requirements and runtime of derivative computation. By devising a scheme
that would preclude the storage of zero entries as well as extraneous “zero-sum” computa-
tions resulting from the zero entries, we can save on memory and runtime. The dynamic
nature of the directional gradient vectors during the execution of AD-generated derivative
codes, in terms of the number of nonzero entries in a vector at a given time, as well as
the goal of obviating the need for a priori sparsity information requires that the vectors be
represented by using dynamic data structures.

SparsLinC is a library of C routines that provide an implementation of VL.Cs employing
dynamic data structures to represent the directional gradient vectors. When invoked in its
SPARSE mode, ADIFOR generates code in which each VLC is implemented as a call to a
SparsLinC routine, as opposed to the DO-loop implementation in the default (NONSPARSE)
mode. Whereas for every scalar active variable, NONSPARSE ADIFOR allocates a correspond-
ing directional gradient vector of size d containing the derivative values (many of which may
possibly remain zero for the duration of the computation), SPARSE ADIFOR allocates an
INTEGER variable that is interpreted as a pointer to SparsLinC’s representation of the vector.

The design of SparsLinC is based on representing the nonzero information in each vec-
tor (i.e., the nonzero values and their corresponding vector indices) in one of three data
structures—one to represent a vector with zero or one nonzero entries (S1); another for
a vector with a few nonzeroes (SS), and a third for a vector with contiguous ranges of
nonzeroes (CS). The SparsLinC polyalgorithm heuristically switches between these repre-
sentations. SparsLinC performs the necessary management of its internal vector represen-
tations, including the implementation of a “grow as you go” strategy for the recruitment
of dynamically allocated memory for the storage of the sparse vectors, and a recurrent re-
cycling scheme for the reuse of memory. The SS and CS sparse representations make use
of a bucket storage scheme, where each bucket consists of a (user-configurable) number of
elemental data types. Memory is dynamically allocated in units of stores of buckets. In
contrast to other sparse implementations [3, 19] which allocate memory for each nonzero
separately, the bucket scheme allows for greater flexibility and runtime efficiency, at the
cost of introducing some storage overhead (not all of the allocated memory is necessarily

Table 3.1: MINPACK-2 Unconstrained Optimization Problems
Name | Description of the Problem

EPT Flastic-Plastic Torsion

GL2 Ginzburg-Landau (2-d) superconductivity
MSA Minimal Surface Area

0DC Optimal Design with Composite materials
PIB Pressure distribution in a Journal Bearing
SSC Steady State Combustion

used).

The basic module of SparsLinC performs a VLC (1.1) by using a heapsort to pop the
smallest-indexed nonzero (or nonzero range, in the CS case) present among the right-hand
side vectors, and constructing the left-hand-side vector in a one-pass traversal. A special
“plus-equals” module takes advantage of the existing data structure of the left-hand-side
vector in cases in which the same vector also appears on the right-hand side, thus resulting
in a more efficient computation.

Two features of SparsLinC are of particular relevance to the present discussion: the
transparent exploitation of partial separability, and automatic detection of the sparsity
pattern of the Jacobian. Previous attempts at exploiting partial separability in the context
of AD have been based on manual modification of the code for the function in such a way as
to transform the derivative computation from a dense gradient problem to a sparse Jacobian
problem [12]. The transparent exploitation of partial separability in SparsLinC does not
require code modification. Instead, it relies on the sparse representation and processing of
the VLCs involving the element functions, and on the efficiency of the plus-equals module
for the accumulation of the dense gradient vector.

The detection of the sparsity pattern of Jacobians is of interest in a number of compu-
tations (e.g., see [14]). As we shall see in Section 4, sparsity detection is a prerequisite for
compressing Jacobians using coloring methods. In our Jacobian experiments we use pre-
packaged MINPACK-2 routines for detecting the sparsity pattern of the Jacobian for each
problem. However, in the absence of such special routines (or in cases where the sparsity
pattern varies for differing values of the independent variable), we can use SparsLinC for
this purpose. The computation of the Jacobian using SparsLinC yields the sparsity pattern
of the Jacobian as a natural byproduct of the work it does in computing the Jacobian.

A detailed description of the SparsLinC library will be reported elsewhere, and the full
Fortran interface specification can be found in [6].

3 Computing Gradients of Partially Separable Functions

The MINPACK-2 Test Problem Collection [1] contains a number of unconstrained opti-
mization problems from a variety of application areas. Table 3.1 shows the six MINPACK-2
problems we used in our gradient experiments. For each problem, we computed the gra-
dient using both the NONSPARSE ADIFOR approach and the sPARSE ADIFOR/SparsLinC

Table 3.2: Memory Requirements for Gradient Problems (in Mbytes; n = 160, 000)

Problem H M{F} ‘ M{GAD_16} M{GAD—16}/M{F} ‘ M{GSparse} M{GSpaTs€}/M{F} ‘

EPT 1.29 23.06 17.8 14.15 11.0
GL2 2.59 45.03 17.4 19.65 7.6
MSA 2.57 24.34 9.5 12.60 4.9
oDC 1.29 23.06 17.8 13.05 10.1
PJB 1.29 23.06 17.8 14.16 11.0
SSC 1.29 23.06 17.8 14.15 11.0

approach, and compared the memory requirements and runtimes of the two approaches (in
what follows we will simply refer to the two approaches as NONSPARSE and SPARSE, respec-
tively). We performed our experiments on two workstation platforms: Sun SPARCstation
IPX, and IBM RS6000-370.

The gradient values obtained for all problems using both the NONSPARSE and SPARSE ap-
proaches agreed to within machine precision of the hand-coded derivatives, available in

MINPACK-2.

3.1 Memory Requirements

In terms of feasibility, memory is a critical issue in the computation of large gradients. The
memory required for a straightforward AD implementation of the gradient computation
would be roughly equivalent to augmenting the memory required for the function compu-
tation by a factor of n, where n is number of components of the independent variable,
alternately referred to as the problem size. For large n, this linear expansion can lead to
excessive paging, or simply be prohibitive. For example, a NONSPARSE ADIFOR implemen-
tation of the gradient computation for the GL2 problem of size 160,000 would require more
than 400 gigabytes of virtual memory.

One approach to breaking the linear memory dependence is stripmining of derivative
computation. This approach involves dividing the gradient computation into strips, each
strip consisting of the differentiation with respect to a few components of the independent
variable, and each strip having reasonable memory requirements (as we will see in Section
4.3, stripmining can also be used in Jacobian computations). In the case of ADIFOR-
generated code, stripmining can be done conveniently through the seed matrix mechanism.
The runtime penalty for this approach is an extraneous function recomputation per strip,
which can be effectively amortized for large strip sizes. Since each strip is computed indepen-
dently, stripmining can also be used for easy parallelization of the gradient computation [10].

*The Unix command ‘size ezecutable-file’ reports the total amount of statically allocated memory (i.e.,
the memory requirements that can be assessed at link-time such as array sizes, etc.) needed to load and run
the executable. In the case of SparsLinC, where memory is also allocated dynamically, we call a SparsLinC
routine that reports the total amount of dynamically allocated memory, and add this to the statically
allocated memory, in order to arrive at the total memory requirements.

Table 3.2 contains a summary of the memory requirements* of our gradient experiments
for the case of n = 160, 000. We use the notation M {C'} to denote the memory requirements
of a computation C', and we report only one set of numbers, since memory requirements on
the two test-bed platforms are identical. The first column in Table 3.2 shows the memory
required for computing the original function, F. The next double column shows first the
memory requirements, M{Gsp_16}, of a stripmined NONSPARSE computation with a strip
size ps = 16, and then the ratio of this gradient memory requirement to that of the cor-
responding original function. We note that in each case except one, M{Gsp_16}/M{F'}
is slightly greater than ps;, matching our expectation of linear augmentation in memory
requirements. The exception is the MSA problem, where the M{G sp_16}/M{F} ratio is
smaller than p;. Here the computations involving a large work array in the original function
are unrelated to derivative computation; hence ADIFOR does not generate a corresponding
augmented derivative work array (for a full discussion of this issue, see “Variable Nomina-
tion” in [8]). We also note that the equivalence of the M{F}’s and M{Gap_16}’s of the
EPT, ODC, PJB and SSC problems is due to the similarity of the code structures of these
problems.

The second double column in Table 3.2 shows the memory requirements of the SPARSE
computation, M{Gsparse }, along with the ratio of this gradient memory requirement to that
of the corresponding original function. Here we see the terseness of SparsLinC’s memory
allocation scheme in that M{G gperse } is always within a factor 4.9-11.0 of M {F'}. The vari-
ation among these ratios is indicative of the variation in the sparsity characteristics of their
corresponding gradient computations. Note that in all cases, M{Ggparse} < M{Gap—_16},
despite the fact that Ggpe,se computes the whole gradient at once, whereas G'4p_16 com-
putes the gradient a strip at a time.

3.2 Runtime

Figure 3.1 is a summary of all our gradient runtime results. For each of the optimization
problems in Table 3.1, we timed the SPARSE and the stripmined NONSPARSE gradient com-
putations for several problem sizes ranging from n = 2,500 to n = 160,000. Similar to the
case of memory requirements, here we were interested in the augmentation factor of the run-
time of the gradient computation with respect to the runtime of the function computation.
Subsequently, the plots shown in the six panels of Figure 3.1 are all gradient-to-function
runtime ratio plots.

Each panel shows the gradient-to-function ratios for two of the MINPACK-2 problems,
for both SPARSE and NONSPARSE gradient computations on a given machine. Note also that
for each panel both axes are logarithmic in scale (logyg).

The most salient result evident in Figure 3.1 is the disparity between the SPARSE and
NONSPARSE runtime ratios for each problem. In all cases the NONSPARSE gradient computation
displays a purely linear behavior with respect to the function computation over the range
of problem sizes. Note that in all cases the linear coefficient is very close to 1 (by virtue
of the fact that all the NONSPARSE plots are close to the y = 2 diagonal line). As we
mentioned in Section 1, this is due to the DO-loop implementation of VL.Cs in the derivative
code generated by ADIFOR in the default or NONSPARSE mode. On the other hand, the
SPARSE runtime ratios, though not independent of n, show a markedly reduced dependency

10

Sparse vs Nonsparse Ratios on SPARC IPX

[EnY
o

Gradient to Function Ratio
[y
o

Sparse vs Nonsparse Ratios on SPARC IPX

[EnY
o

Gradient to Function Ratio
[E=Y
o

Sparse vs Nonsparse Ratios on SPARC IPX

[EnY
o

Gradient to Function Ratio
[E=Y
o

Figure 3.1: Log-Log plots for each platform of gradient-to-function runtime ratios of the

~

N

~

N

~

N

GL2 and MSA

—GL2 sparse
= =GL2 nonsparse
"=+ MSA sparse

. MSA nonsparse| % .

&

Gradient to Function Ratio

Problem Size

SSC and EPT

— SSC sparse
= =SSC nonsparse
=" EPT sparse

~+ EPT nonsparse "’

10

10

Gradient to Function Ratio

10
Problem Size

Sparse vs Nonsparse Ratios on RS/6000

— GL2 sparse -
= =GL2 nonsparse .
'=+MSA sparse 280
' MSA nonsparse| “ .

10
Problem Size

Sparse vs Nonsparse Ratios on RS/6000

— SSC sparse
= =SSC nonsparse <,
=+ EPT sparse SR

' EPT nonsparse| « ,“

Problem Size

PJB and ODC

— PJB sparse
= =PJB nonsparse
'=+0ODC sparse

.. ODC nonsparse| 7"

Gradient to Function Ratio

Problem Size

Sparse vs Nonsparse Ratios on RS/6000

— PJB sparse -
= =PJB nonsparse
'=+0ODC sparse

~+ ODC nonsparse

102 4

Problem Size

SPARSE and NOWSPARSE runs for all gradient problems.

11

Sparsity Characteristics of MSA (N=2,500)

3000 aA Minimum
1ee Maximum

= 2500 - - _|#k Median
k=)

8 ’,.. <o Average
= -
<= 2000 b N
D -

s e

= -

+= 1500 B
s -

o >

o -

§ 1000 |- o 4

g <

o -

500 - - -
. P S 5 - et g
[& P
b PP
P
o i~ " " "
o 20000 40000 60000 80000

Vector Linear Combinations Performed during Execution

Figure 3.2: Sparsity of vectors on the left-hand side of vector linear combinations performed
by SparsLinC during the execution of the gradient code for MSA, n = 2,500.

on n.

Note that in the case of four of the problems (EPT, MSA, ODC, and SSC), gradient
computation is clearly feasible with SparsLinC, whereas the NONSPARSE computation is so
costly that it would be considered impractical. For example, the runtime of computing the
MSA and ODC gradients of size 160,000 on the SPARC IPX is less than 100 times the
function runtime, which is a reasonable cost for some applications, given that SparsLinC
requires no rewriting of code. We also note that this cost can be further reduced by efficient
hand-coding of the gradient or, in the case of partially separable functions, by reformulating
the gradient computation as a sparse Jacobian computation [4].

The variance between the degree of disparity between NONSPARSE and SPARSE results is
due to the differing sparsity characteristics of the MINPACK-2 problems. Figure 3.2 depicts
the sparsity characteristics of the MSA problem, for the case of n = 2,500. In contrast to
Figure 2.1, where for parts of the GL2 computation we observe medians of approximately
1000 nonzeroes per vector, in the case of the MSA computation the median is always
approximately 1. Correspondingly, we note in Figure 3.1 the markedly smaller gradient-
to-function ratios for the SPARSE MSA computation as compared with the SPARSE GL2
computation.

One aspect of the results in Figure 3.1 is that despite the qualitative similarity of the
corresponding curves on the SPARC IPX and the R56000, the quantitative results differ in
certain characteristic ways. We note that in general, the disparity between the SPARSE and
NONSPARSE results are somewhat larger on the SPARC IPX. As is clear from the plots, this
is caused both by the SPARSE ratios being smaller on the SPARC IPX (compare for example
the SPARSE MSA results on the two platforms) and by the NONSPARSE ratios being larger.

These performance differences are a reflection of architectural features of the two plat-
forms. The SPARC IPX essentially has a scalar processor and a flat memory hierarchy.

12

SparsLinC Performance Improvements on the SPARC IPX

3.5 T T T T T T T
E - EE EE O EE o Em Em = = N
@ it P P
£ apuerr T TE SR
D e —]
= o e
o - o— P
o
e
@ |
=)
=
=
=y |
(] ' EEERR ' ' ' o il o ' '
= L
= |
o EPT (SPARC IPX); ratio at n=160,000 : 339
— oo GL2 (SPARC IPX); ratio at n=160,000 : 20.6
g 1= m=e MSA (SPARC IPX); ratio at n=160,000 : 848
— 0.5 == === ODC (SPARC IPX); ratio at n=160,000 : 1080 | |
© — PJB (SPARC IPX); ratio at n=160,000 : 18.6
Nt SSC (SPARC IPX); ratio at n=160,000 : 513
O Il Il Il Il Il Il
o 2 6 8 10 12 14 16
Problem Size x 10%
SparsLinC Performance Improvements on the RS/6000
3 T T T T T T T
=
@ e m) mm wm wmmmmmmm
= e ———
@ - m mm Em R Em o Em e e e == =
ey e m = =—
o E
o -
e
D
=)
= —
=
(2]
I
E [l 1 ' [1 11 1 [[['
- 1+ . , . Vi i ' ' ' i
o
» o= EPT (RS/6000); ratio at n=160,000 : 182
— / o GL2 (RS/6000); ratio at n=160,000 : 11.4
Sosk '='='=1= MSA (RS/6000); ratio at n=160,000 : 333 i
— = = === ODC (RS/6000); ratioat n=160,000 : 226
© —— PJB (RS/6000); ratio at n=160,000 : 9.94
Nt SSC (RS/6000); ratio at n=160,000 : 160
O Il Il Il Il Il Il
o 2 6 8 10 12 14 16
Problem Size x 10%

Figure 3.3: Logarithmic plot for each platform of SPARSE divided by NONSPARSE runtimes

for all gradient problems.

13

Hence, vector operations execute only marginally faster, and memory locality (i.e., the
reuse of data and the accessing of adjacent memory locations) is not much of an issue. In
contrast, the RS6000 architecture employs a superscalar chip and a cache-based memory
architecture. Hence, this machine performs better if executing short vector operations,
since these operations can fill the short pipes and take advantage of memory locality. This
is advantageous in the NONSPARSE computation where the VLCs are implemented via DO-
loops. On the other hand, indirect addressing, used extensively in the SparsLinC algorithm,
while fairly inconsequential on the SPARC, may lead to a performance degradation on the
RS6000, as memory locality suffers.

Figure 3.3 is an alternative way of presenting the results in Figure 3.1. Here we have
plotted for each machine and each problem the logi of the ratio of NONSPARSE to SPARSE run-
times in order to demonstrate the orders of magnitude runtime improvements achieved by
SparsLinC. Note that the line definition box also includes for each problem the true ratio
of NONSPARSE to SPARSE runtimes for the case of n = 160, 000.

For the largest problem size we note that the improvements in the gradient computation
due to SparsLinC range from a factor of nearly 10 in the case of the PJB problem running
on the RS56000, to a factor of greater than 1,000 for the ODC problem on the SPARC IPX.
We also note that for large problem sizes the runtime efliciencies achieved by SparsLinC
near a plateau. We suspect that this behavior is caused by the dense gradient computation
increasingly dominating the overall computational task.

4 Computing Sparse Jacobians

For our sparse Jacobian experiments we selected five problems from the MINPACK-2 prob-
lem set of systems of nonlinear equations and one problem from the molecular distance
geometry (MDG) class of global minimization functions. The MINPACK-2 problems are
identified in Table 4.1. These are a standard set of test problems; the reader is referred to
[1] for detailed descriptions.

The MDG problem is described in Moré and Wu [24] as follows: Given bond lengths §; ;
between a subset § of the atom pairs, determine whether there is a molecule that satisfies
these bond length constraints. Moré and Wu formulated this problem in terms of finding
the global minimum of the function

2
fay= 3" wi ([l — 2l - 62) (4.1)
ijeS
where w; ; are positive weights, and z;, z; € IR? are the positions of the i-th and j-th

atoms in the molecule. Here, we reformulate the MDG problem in terms of finding the
global minimum of the nonlinear least squares problem

inimize | F 4.2
minimize || F(2) [z, (4.2)

where F(z) € R™, n = 3 x the number of atoms (3 coordinates per atom), m = the number
of 6; ; terms that are specified in order for the problem to be deterministic (m > n), and
for each é; ;, the corresponding (k-th) component of F(z) is defined by

2
Fe(a) = wij (o — 2l = 64;) ", k=(,5), k€S,

14

Table 4.1: MINPACK-2 Nonlinear Equations
Name | Description of the Problem

FDC Flow in a Driven Cavity
FIC Flow in a Channel

IER Incompressible Elastic Rod
SFD Swirling Flow between Disks
SFI Solid Fuel Ignition

This transformation, while not altering the nature of the underlying computation or solu-
tion, poses the derivative problem as a sparse Jacobian computation.

We compared the ADIFOR/SparsLinC approach with an approach that uses a graph-
coloring algorithm to compute the compressed Jacobian. In this section, we describe the
compressed Jacobian approach. Then, we present the memory requirements and runtime
results of both approaches for the MINPACK-2 and the MDG test problems.

4.1 The Compressed Jacobian Approach

The compressed Jacobian approach has been used as an effective strategy for computing
sparse Jacobians in conjunction with both finite differencing [17] and automatic differen-
tiation methods [2]. The prerequisite for applying the compressed Jacobian approach to
a given sparse Jacobian computation is a priori knowledge of the sparsity pattern of the
Jacobian.

The basic idea underlying this approach is that all the relevant (i.e., nonzero) information
in the full Jacobian f’(2) of size m x n can be represented in a compressed Jacobian C'(z) of
size m X p, where C(z) = f'(2)9, for some seed matrix 5, and usually p < n. Essentially,
S maps each group of structurally orthogonal columns of f'(z) (i.e., columns that do not
have a nonzero in the same row position) to a column of C'(z). Because of the structural
orthogonality property we can uniquely extract all entries of the original Jacobian matrix
from the compressed Jacobian [2].

If the sparsity pattern of the Jacobian can be determined, graph-coloring techniques can
be used to arrive at S and p. These algorithms produce a partitioning of the columns of the
Jacobian into p structurally orthogonal groups by coloring the column-intersection graph
associated with the Jacobian. In our experiments we employ the graph-coloring software
described in [16] to obtain 5, and then compute C'(2) by initializing the ADIFOR-generated
derivative code of f(z) with the seed matrix set to §.

From the point of view of computational complexity, the consequence of the compressed
Jacobian approach is clear. Specifically, the memory and runtime requirements of the
Jacobian computation will approximately augment function requirements by a factor p
rather than n. For many sparsity patterns, in particular regular grid problems, p is small
and independent of n. Hence, the compressed Jacobian can be computed in a constant
times the function computation time, regardless of n.

Naturally, the compressed Jacobian approach does introduce additional computational
requirements, namely, (7) computing the sparsity pattern; (¢¢) performing the graph col-

15

oring; and (#i7) subsequent to the computation of the compressed Jacobian, unraveling to
arrive at the full Jacobian. However, often Jacobian computation is a subproblem within
an optimization problem, and in an optimization algorithm we invariably need to compute
a sequence { f'(zy)} of Jacobians for some sequence {1} of iterates. In most cases we need
to perform (¢) and (é7) only once, since we can specify the closure of the sparsity patterns
(i.e., a sparsity pattern that, for every iterate 2, contains the sparsity pattern of { f'(zx)}).
If we are not able to specify the closure, the compressed Jacobian approach requires a call
to the graph-coloring software at each iteration. Finally, the computational requirements
of (i7i) are relatively small.

The interesting difference between the MINPACK-2 and the MDG Jacobians is that
for each MINPACK-2 problem the chromatic number is independent of n, whereas the
chromatic number for the MDG Jacobians grows as a function of n. This difference is due
to the “regularity” of the sparsity structures of the MINPACK-2 Jacobians as we change
n, and the lack of the same in the case of the MDG Jacobians.

Figure 4.1 shows the sparsity patterns for some SFD and MDG Jacobians (here each dot
represents the occurrence of a nonzero in the final Jacobian). In the case of each problem,
we have chosen two small problem sizes in order to visually compare their respective sparsity
structures. For the MDG problem of size n = 81, we have additionally plotted the upper left-
hand corner of the Jacobian, since it is difficult to distinguish the location of the nonzeroes
in the full Jacobian.

In comparing the sparsity patterns of the two SF'D problems, we note that an identically
shaped nonzero block structure appears repeatedly along the main diagonal as n is increased.
The implication of this regularity of structure for the graph-coloring algorithm is that a fixed
number of colors are sufficient for the representation of the compressed Jacobian, that is,
p remains constant for all n. Though the algorithms used in graph coloring are based on
partitioning methods, one can visualize the results as each block in the full Jacobian sliding
left to occupy the corresponding set of rows in the p columns of the compressed Jacobian.
Though distinct in shape, the sparsity patterns of the remaining MINPACK-2 Jacobians
also have this regularly repeating feature, since they are all regular grid problems.

In contrast to the MINPACK-2 problems, for the two MDG Jacobians we note that as n
grows, the shape of the structures in the Jacobian sparsity pattern changes. This is clearly
apparent when comparing the sparsity pattern of the MDG Jacobian for n = 24 with the
corresponding slice of the MDG Jacobian for n = 81. The reason for this variation has
to do with the problem specification itself. The formulation of the MDG problem is such
that commensurate with increasing n, the number of atoms in the molecule is increased. In
order for the problem to remain deterministic, corresponding to the increase in n, m (i.e.,
the number of distances between the atoms (6; ;’s) which must be specified) also increases.
The net effect is the structural change evident in the Jacobian sparsity, which in turn leads
to a different chromatic number being computed by the coloring algorithm for each n.

In Sections 4.2 and 4.3 we will compare the performance of the ADIFOR/SparsLinC ap-
proach with that of the ADIFOR/compressed Jacobian approach when the chromatic num-
ber, p, is independent of n and when it is not, respectively. We refer to the
ADIFOR/SparsLinC approach as the SPARSE approach in the sense that the complete
(sparse) Jacobian is computed, and we refer to the NONSPARSE ADIFOR/compressed Ja-
cobian approach simply as the COMPRESSED approach.

16

SFD Jacobian Sparsity, n = 42. SFD Jacobian Sparsity, n = 98.

0 .
10 .
20
30 .
40 o000 00
0 10 20 30 40 0 20 40 60 80
nz = 446 nz = 1066
MDG Jacobian Sparsity, n = 24. Slice of MDG Jacobian, n = 81.
O [XXX XX] ' ' O (XXX XX] '
[X X) [X X) [X X)
[X X) [X X) [X X)
[X X J [X X) [X X]
5 [XX XXX (X X]
[X X) [X X) [X X)
[X X) [X X) [X X)
[X X) [X X]
(XXX XX]
10 (XX [X X (XXX X
[X X) [X X] [X X] [X X)
[X X) [X X) [X X] [X X]
[XX XXX] [X X] [X X)
[X X) [X X] [X X] [X X)
15 00 (X X] 15 00 (X X]
[X X) [X X) [X X]
(XXX XX] [X X]
[X X) [) [X X]
[X X) [X X) [XX XXX]
20 [XXXYYY} 20 (XX (XYY}
[X X] [X X) [X X) [X X)
[XX XXX] [X X) [X X)
00000 O [X X) [X X)
0 10 20 0 10 20
nz =138 nz =123
MDG Jacobian Sparsity, n = 81.
o m":jj T T T
20
a0
&0
80
100
120
140
160
180
500 b

Figure 4.1: SFD Jacobian sparsity patterns for n = 42, and » = 98, and MDG Jacobian
sparsity patterns for n = 24, and n = 81.

17

Table 4.2: Structural Information about the MINPACK-2 Jacobians

Problem H nnz(f'(x)) ‘ p density of C'(x) ‘
FDC 13 m 19 68%
FIC 8 m 9 89%
IER 11 m 17 65%
SFD 12 m 14 86%
SFI 5m 7 1%

For our purposes of comparing the results of these two functionally equivalent ap-
proaches, we find it useful to think of the COMPRESSED approach as the static approach
to exploiting sparsity in AD, since it statically allocates arrays of length p for the storage
of the directional gradient vectors, and since it requires a priori knowledge of the sparsity
pattern of the Jacobian. Conversely, the SPARSE approach can be thought of as the dy-
namic approach to exploiting sparsity in AD, since it uses dynamic memory allocation for
the storage of the directional gradient vectors, and since the sparsity pattern is computed
as a by-product during the computation of the Jacobian.

When p is independent of n and is relatively small, as in the case of the MINPACK-2
problems, two issues influence whether the static or dynamic approach is preferable. The
first is the issue of convenience. The dynamic approach does not require knowledge of the
closure of the sparsity patterns; hence, from the view point of code development, it is the
more convenient approach. Note that if it is not possible to compute the sparsity closure,
it may be the only approach.

The second issue concerns the sparsity of the compressed Jacobian, which turns out to
be highly correlated with the relative performance of the SPARSE computation as compared
with the COMPRESSED one. Consider the case where the compressed Jacobian is fully dense.
Then the static approach is ideal, since it contains no extraneous zero-sum computations
nor does it allocate extraneous storage. Though by design the dynamic approach also avoids
extraneous computations and storage, it is burdened by overheads associated with dynamic
memory allocation and the maintenance of dynamic data structures. On the other hand,
if the compressed Jacobian is sparse, the dynamic approach becomes preferable, since its
overheads are offset by the many extraneous computations and unused memory in the static
approach.

Tables 4.2 and 4.3 contain information relating to the structure of the MINPACK-2 and
the MDG Jacobian problems, respectively. In the case of the MINPACK-2 problems, m = n
and p remains constant. Hence, in Table 4.2 we have shown for each problem the number
of nonzeroes in the Jacobian, nnz(f'(x)), as well as the chromatic number, p, computed
by the graph-coloring software. As previously discussed, p is independent of n for every
MINPACK-2 problem because the sparsity structure of the corresponding Jacobian is also
independent of n. On the other hand, for the MDG problem the Jacobian structure is
distinct for each problem size n. Hence, in Table 4.3 we have shown the corresponding n,
m, and p values. For all n, the number of nonzeroes in the MDG Jacobian is given by

18

Table 4.3: Structural Information about the Molecular Distance Geometry Jacobians

n m p density of C'(x) ‘
375 2801 78 8%
525 4051 78 8%
648 7111 111 5%
1029 15583 150 4%
1536 30689 195 3%
2187 55729 246 2%
3000 94951 303 2%
3993 153671 366 2%
5184 238393 435 1%
6591 356929 510 1%
8232 518519 591 1%
10125 733951 678 1%

nnz(f'(z))= 6m.

The last column in both Tables 4.2 and 4.3 show the density of C'(z), computed as
nnz(f'(2))/mp. In Sections 4.2 and 4.3, we will show the correlation of these densities with
the memory requirements and runtime performances of the two approaches.

4.2 Computing Sparse Jacobians When p Is Independent of n
4.2.1 Memory Requirements

Table 4.4 presents the total memory requirements of the two approaches for computing the
Jacobian of the MINPACK-2 problems for the case of n = 160,000. In addition to the
notation introduced in Table 3.2, we use M{.J} to denote the memory requirements of the
COMPRESSED approach, which includes the memory needed for the graph-coloring computa-
tion, and M{Jspurse} to denote the memory requirements of the SPARSE approach. For each
problem, the ratio M{.J}/M{F'} remains constant for all n. Hence, Table 4.4 is a sufficient
summary of all the memory results.

As mentioned in Section 3.1, the NONSPARSE mode of ADIFOR tends to augment memory
requirements of the function computation linearly. In the case of the compressed Jacobian
computations the augmentation factor is the chromatic number, p. However, since the
graph-coloring algorithm also introduces additional memory requirements proportional to
nnz(f'(z)), the M{J}/M{F'} ratios in Table 4.4 are larger than the corresponding p values
in Table 4.2, and we have

M{J} < 5 p M{F} (4.3)

with 1.5 < k < 1.9. In general, x is largest for the problems with denser compressed
Jacobians. For example, for the FIC problem, the compressed Jacobian is 89% dense and
k = 1.9, whereas for the IER problem, the compressed Jacobian is 65% dense and x = 1.5.

19

Table 4.4: Memory Requirements for MINPACK-2 Jacobians (in Mbytes; n = 160,000)

Problem || M{F} | M{J} M{J}/M{F} | M{Jsparsc} M{Jsparse}/M{F} |

FDC 2.57 74.90 29.1 54.35 21.1
FIC 2.58 43.05 16.7 32.17 12.5
IER 2.57 67.22 26.1 50.65 19.7
SDF 2.58 60.84 23.6 41.77 16.2
SFI 2.57 33.94 13.2 28.35 111

Given that the memory requirements of the SPARSE approach are based on the need to
represent the nonzero information in the derivative computation, and that this information
is close in volume to the size of the compressed Jacobian (for the MINPACK-2 problems,
within 65% — 89%), we expect the values of M{Jgparse }/M{F} to be somewhat correlated
with the corresponding p for each problem. A comparison of the last column of Table 4.4
and the corresponding values of p shows this to be the case, where we have

M{Jsparse} <op M{F} (4'4)

with 1.1 < ¢ < 1.6.

We note that the memory requirements of the COMPRESSED approach are 19% — 46%
greater than the memory requirements of the SPARSE approach. This is somewhat surprising,
since in all cases the compressed Jacobians are fairly dense, and one might suspect that a
static approach would be more parsimonious in terms of memory usage. The disparity is
mainly attributable to the need for the additional memory required by the graph-coloring
algorithm in the COMPRESSED approach, but also to the terseness of SparsLinC’s memory
allocation scheme, and the fact that SparsLinC exploits intermediate sparsity in derivative
computations.

Inequality (4.4)is a useful metric in terms of comparing the memory requirements of the
SPARSE with the COMPRESSED approach. However, SparsLinC has no knowledge of p, which
can be thought of as a global measure of sparsity. SparsLinC’s representation of directional
gradient vectors is based on very localized information, namely, the number of nonzeroes
in each gradient vector. The most striking example demonstrating the difference between
these global and local approaches toward storage would be the computation of a sparse
Jacobian with one fully dense row and a dense diagonal. In this case p = n; hence, the
compressed Jacobian approach would fail entirely. On the other hand, SparsLinC would
need to maintain only one vector of length n, and n — 1 vectors of length 1, resulting in
much less memory-intensive (as well as faster) code.

Hence, it would be more descriptive of the localized vector representations in SparsLinC
to express the augmentation factor of the memory requirements of the SPARSE approach
with respect to those of the function, as proportional to the average number of nonzeroes
per row of the Jacobian,

M{JSpaTse} S)

/ 711“(7{;(96)) M{FY}, (4.5)

20

Table 4.5: Runtime Ratios on the SPARC IPX (n = 160, 000)
Problem || Coloring | COMPRESSED | SPARSE | SPARSE/COMPRESSED |

FDC 19.4 15.9 92.7 3.3
FIC 6.7 6.9 32.3 4.7
IER 20.4 10.7 24.5 2.3
SFD 9.0 8.3 25.2 3.0
SFI 29.2 16.4 41.5 2.5

Table 4.6: Runtime Ratios on the RS6000 (n = 160, 000)
Problem || Coloring | COMPRESSED | SPARSE | SPARSE/COMPRESSED |

FDC 31.5 11.5 109.0 9.5
FIC 30.2 7.8 161.0 20.7
IER 69.9 8.8 86.2 9.8
SFD 94.7 10.9 156.0 14.3
SFI 47.1 7.4 83.2 11.2

where for the MINPACK-2 problems, 1.4 < ¢/ < 2.2. As we shall see in Section 4.3.1,

inequality (4.5) is a more reliable generalization of the expected memory requirements of
the SPARSE approach.

4.2.2 Runtime

Figures 4.2 and 4.3 summarize the runtime results of the Jacobian problems on the SPARC
IPX and RS6000, respectively. As in the case of the gradient experiments, the prob-
lem sizes range from n = 2,500 to n = 160,000. FEach panel in these figures contains a
plot of the SPARSE Jacobian-to-function runtime ratios. Additionally, the results from the
COMPRESSED computation are shown with two plots in each panel, one showing the coloring-
to-function runtime ratios, and the other showing the compressed Jacobian-to-function run-
time ratios. As we explained in Section 4.1, for most optimization algorithms, the coloring
computation is performed only once, whereas iterates of the compressed Jacobian are com-
puted repeatedly, hence the separation of the two computations in our plots. In addition to
plotting these runtime ratios, we report their values for the case of n = 160,000 in Tables
4.5 and 4.6.

A main feature of these results is that for both approaches the runtime of the Jacobian
computation is independent of n, as shown by the constant ratio plots. In the case of the
COMPRESSED approach, this behavior is expected, since we know the Jacobian runtime will
be approximately equal to the linear augmentation of the function runtime by a factor p,
and as we have stated, p is independent of n. Based on the COMPRESSED ratios in Tables 4.5
and 4.6, we can state that

T{JCompTessed} < A p T{F}v (46)

21

FDC

H
o
o

Runtime Ratios
o1
o

SPARC IPX

0 : - . .
0 0.5 1 15)
Problem Size . 105
IER
n 40
o
©
x \
GEJZO jmmm
] li
C e
o)
X g - . . |
0 05 1 15 2
Problem Size . 105
SFI
8 N_
= 40
m -----
0] N, T~
€201 ...
= \ .
-}
) - . . |
0 0.5 1 15 y)
Problem Size . 105

FIC

N
o

b v o s

Runtime Ratios
[)]
o

o

0.5 1 15 2

0
Problem Size . 105
SFD
40
\ —

T T T

Runtime Ratios
[)]
o

o

0.5 1 1.5 2
Problem Size . 105

o

— SPARSE (SPARC IPX)
+++ NONSPARSE (SPARC IPX)
= = Coloring (SPARC IPX)

Figure 4.2: Runtime ratios of MINPACK-2 Jacobian problems on the SPARC IPX. For
each problem, COMPRESSED computation-to-function, SPARSE computation-to-function and
coloring-to-function runtime ratios are shown for problem sizes n = 2,500 to » = 160, 000.

22

RS6000

FDC FIC
0 200 n 200
0 9 —~
© © 7
Y . 4
0] 0]
: 100 £ 100
c c
-} - = EE_—_—— -} o == == m=_—_—_——
Q@ gl , O gl .
0 0.5 1 1.5 2 0 05 1 1.5 2
Problem Size . 105 Problem Size . 105
IER SFD
» 100 n 200
.g [.g
A .
0] 0]
£ 50 ’: £ 100
g E fem-mmmmmm o
N =
© ' ® | .
0 0.5 1 1.5 2 0 0.5 1 1.5 2
Problem Size . 105 Problem Size . 105
SFI
0 100
g [— SPARSE (RS/6000)
g 50 ‘_ e m = ——— +++ NONSPARSE (RS/6000)
2 = = Coloring (RS/6000)
-]
Y L

0 0.5 1 15 2
Problem Size X 105

Figure 4.3: Runtime ratios of MINPACK-2 Jacobian problems on the RS6000. For
each problem, COMPRESSED computation-to-funtion, SPARSE computation-to-function and
coloring-to-function runtime ratios are shown for problem sizes n = 2,500 to » = 160, 000.

23

where T'{.} denotes the runtime of each computation and where 0.6 < A < 2.4 on the
SPARC IPX and 0.5 < A < 1.1 on the RS6000. The variation in A values for the different
problems is due to the peculiarities of each code, in particular the extent to which ADIFOR
can minimize the computations performed in the derivative code through activity analysis.
The variation in A values between the two platforms is due to architectural differences
reviewed in Section 3.2, though it is surprising to see that the RS6000 ratios are slightly
greater for the FIC and SFD problems. We note that in all cases A is a small constant,
which matches our expectation.

For the SPARSE Jacobian computation, the constant behavior with respect to function
runtime is due to the sparsity present in all the intermediate directional gradient vectors.
Unlike the SPARSE gradient computation, where at least one directional gradient vector
(i.e., the final gradient vector) grows to be fully dense, in the Jacobian computation all
intermediate vectors will be as sparse or more sparse than the least sparse row of the
Jacobian. From the results of the coloring algorithm, we know that this row can have no
more than p nonzeroes (otherwise the compressed Jacobian would not “fit” into p columns).
In terms of an augmentation over function time, we can state that

T{JSpaTse} <w P T{F}7 (47)

where 1.4 < w < 5.9 on the SPARC IPX and 5.0 < w < 17.9 on the RS6000. Similar to the
case of the memory requirements of SPARSE approach, we can express the augmentation of
the SPARSE runtime with respect to the function runtime as a factor of the average number
of nonzeroes per row of the Jacobian:

T{JSparse} S w

where 2.1 < &’ < 8.3 on the SPARC IPX and 7.8 < ' < 20.1 on the RS6000. We will
revisit inequality 4.8 in Section 4.3.2.

The last column in Tables 4.5 and 4.6 show the ratios of SPARSE runtime to COMPRESSED run-
time for each problem on each platform. These ratios—all of which are above 1—represent
the penalty paid for the convenience of the dynamic approach. As expected, there is a strong
correlation between these ratios and the sparsity of the corresponding compressed Jacobian.
For example, on both platforms the highest ratios occur for the FIC problem, which has the
least sparse compressed Jacobian. Conversely, the ratios for the IER problem, which has
the most sparse compressed Jacobian, are among the smallest. In general, the sparser the
compressed Jacobian, the better the runtime performance of the SPARSE approach relative
to that of the COMPRESSED approach.

The coloring algorithm also demonstrates constant runtime behavior with respect to
function runtime, with the constant factor usually being somewhere between the corre-
sponding factors of the COMPRESSED and SPARSE computations. The closure of the sparsity
patterns of each MINPACK-2 Jacobian problem is known; hence, the impact of the one-
time graph-coloring computation on the overall optimization computation would be mini-
mal. Had the closure been unknown, the coloring computation would need to be repeated
at each iteration, with the possible consequence of the SPARSE approach having a faster
runtime. For example, in Table 4.5 note that for the IER and SFI problems on the SPARC
IPX, the sum of the runtime ratios of the coloring and COMPRESSED compressed Jacobian
computations exceeds the corresponding ratio from the SPARSE computations.

/ 711“(7{;(96)) T{F}, (4.8)

24

4.3 Computing Sparse Jacobians When p Grows with n
4.3.1 Memory Requirements

Table 4.7 presents the total memory requirements of the two approaches for computing
the Jacobians of the MDG problem for various problem sizes (we use the same notation
introduced in Table 4.4). In contrast to Table 4.4 where the memory requirements were
shown only for the largest-sized problem (n = 160,000), Table 4.7 shows the memory
requirements for all problem sizes, ranging from n = 375 to » = 10,125. This is done
for two reasons. First, since now p grows with n, so too does the ratio M{J}/M{F'}, in
contrast to the constant M{J}/M{F} in the case of the MINPACK-2 Jacobians where p
was constant.

Second, largely because of the growing value of p, the executable for the largest-sized
problems became too large to fit in the virtual memory available on either platform. Hence,
we resorted to the stripmining approach (see Section 3.1) for the COMPRESSED computation,
which dramatically reduced memory requirements, while slightly increasing the runtime. We
used strip size ps = 16 for the problems of dimension n = 3,000 to n = 8,232. However, this
choice of ps for n = 10,125 led to performance degradation as a result of paging. Hence, we
used ps, = 8 for the largest problem size (we discuss our choice of strip sizes further in Section
4.3.2). In Table 4.7, the memory requirements of the stripmined COMPRESSED computations
are marked with * for p, = 16 and *x* for p; = 8.

The results in Table 4.7 show that for the non-stripmined COMPRESSED computation of
the MDG Jacobians, the inequality (4.3) holds as it did in the case of the MINPACK-2
Jacobians, with the difference that here p is not constant. Nonetheless, we can compute s
in (4.3) for the MDG problem and ascertain that, as expected, its value varies only slightly
(0.35 < k < 0.41) for the problem sizes n = 375 to n = 2,187. We note that here « is a
factor 3-5 smaller than in the MINPACK-2 cases. This is mainly due to the presence of
several large work arrays of dimension m in the MDG function code, which are unrelated to
any derivative computation; hence, ADIFOR does not generate corresponding augmented
derivative work arrays.

For the stripmined COMPRESSED computation of the MDG Jacobians, we need a new
inequality, since now the linear augmentation is dependent on the strip size and not the
chromatic number:

M{Jstripmined} < Hl Ps M{F} (49)

where k' = 0.54 for all problem sizes for which p; = 16, and ' = 0.74 when p, = 16.
This strict dependance of ' on p, implies that the memory requirement penalty of the
stripmining method decreases with respect to the function memory requirements as the
strip size increases. By virtue of the same reasoning, we can explain why £ < &/, since
essentially the non-stripmined computation can be thought of as a stripmined computation
with one strip of size p, = p.

We also observe from Table 4.7 that the M{Jspursc}/M{F'} ratio for the SPARSE ap-
proach varies only slightly for different problem sizes. As noted in Section 4.1, nnz(f'(2))=
6m for the MDG problem; hence the average number of nonzeroes per row of the Jacobian
is always 6, for all n. Consequently, inequality (4.5) holds, and the corresponding range of
o' values for the MDG problem is given by, 1.5 < ¢/ < 1.7.

25

Table 4.7: Memory Requirements for the Distance Geometry Jacobians (in Mbytes)

| o [M{F}| M{J} M{UYM{F} | M{Usparse} M{Jsparse}/M{F} |

No Stripmining

375 0.07 2.22 31.7 0.70 10.0
525 0.10 3.19 31.9 0.98 9.8
648 0.18 7.46 41.4 1.65 9.2
1029 0.38 21.16 55.7 3.49 9.2
1536 0.75 52.66 70.2 6.77 9.0
2187 1.36 118.29 87.0 12.22 9.0
Stripmined (ps = 16)
3000 2.30 19.88" 8.6 20.71 9.0
3993 3.72 32.00* 8.6 33.47 9.0
5184 5.76 49.47* 8.6 51.85 9.0
6591 8.62 73.88* 8.6 77.48 9.0
8232 12.51 107.11* 8.6 112.16 9.0

Stripmined (p; = 8)
| 10125 || 17.70 | 103.76™ 5.9 | 15847 9.0

In summary, the memory requirements of the COMPRESSED approach are greater than
those of the SPARSE approach by a large factor, ranging from 3.2 to 9.7 for the non-
stripmined problems. This result is due to the compressed Jacobians of the MDG problems
being very sparse, and more and more so as n grows. Stripmining can be a very effective
method of reducing the memory requirements of the COMPRESSED approach—and, as we shall
see, at the cost of a modest runtime penalty. Finally, we note that though we did not need
to stripmine the SPARSE computation, this method is equally possible and straightforward.

4.3.2 Runtime

Figures 4.4 and 4.5 show the Jacobian-to-function runtime ratios for the MDG problems
on the SPARC IPX and RS6000, respectively, with sizes n = 375 to n = 10125. Each figure
includes three plots showing the ratios of the COMPRESSED (dotted), SPARSE (solid), and
graph-coloring (dashed) runtimes to the function runtimes. We also present the detailed
Jacobian-to-function and coloring-to-function runtime ratios on the SPARC IPX and the
RS6000 in Tables 4.8 and 4.9, respectively. Note that, as before, the runtime ratios of a
stripmined COMPRESSED computation are marked with * for p, = 16 and *x* for p, = 8.

The main conclusion that can be drawn from the plots in Figures 4.4 and 4.5 is that the
the Jacobian-to-function runtime ratios appear to grow linearly with »n for the COMPRESSED ap-
proach, whereas these ratios are independent of n for the SPARSE approach. Hence, the
SPARSE approach is clearly the method of choice for problems where the chromatic number
grows as a function of the problem size and yet the sparsity of the corresponding Jacobians
remains constant (i.e., nnz(f'(z)) is proportional to m). The efficient runtime performance

26

Table 4.8: Runtime Ratios of the MDG Problem on the SPARC IPX

| n || Coloring COMPRESSED SPARSE | SPARSE/COMPRESSED
No Stripmining
375 31.6 113 124 1.1
525 31.3 121 128 1.1
648 31.7 187 124 0.7
1029 32.0 222 126 0.6
1536 38.9 332 127 0.4
2187 39.2 420 123 0.3
Stripmined (p; = 16)
3000 38.9 431* 121 0.3
3993 44.71 hhT* 117 0.2
5184 46.70 645* 132 0.2
6591 50.91 782* 108 0.1
8232 49.60 857* 122 0.1

Stripmined (p; = 8)

| 10125 | 545 1233 | 123 0.1

Table 4.9: Runtime Ratios of the MDG Problem on the RS6000

| n || Coloring COMPRESSED SPARSE | SPARSE/COMPRESSED
No Stripmining
375 66.7 108 257 2.4
525 66.7 111 289 2.6
648 73.3 160 287 1.8
1029 73.5 213 285 1.3
1536 75.0 281 288 1.0
2187 78.2 378 293 0.8
Stripmined (p; = 16)
3000 84.7 396* 289 0.7
3993 92.3 472* 289 0.6
5184 100.0 579* 285 0.5
6591 112.1 662* 291 0.4
8232 122.6 77T 294 0.4

Stripmined (p; = 8)

10125 || 1235 1022+ | 286 0.3

27

SPARC IPX

MOLECULAR DISTANCE GEOMETRY
1400

1200
1000+

\\\\\\
\\\\\

800

Runtime Ratios

eo0F
400+

200

L L
0 2000 4000 6000 8000 10000 12000
Problem Size

Figure 4.4: Jacobian-to-function runtime ratios on the SPARC IPX. COMPRESSED (dotted),
SPARSE (solid), and graph-coloring (dashed).

of the SPARSE approach relative to the COMPRESSED approach is attributed to the fact that
the already very sparse compressed Jacobians get even sparser as we increase the value of
n (see the last column of Table 4.3).

In contrasting the numbers in Tables 4.8 and 4.9, we note that the previously discussed
architectural effects (see Section 4.2.2) once again favor the SPARSE approach on the SPARC
IPX and the COMPRESSED approach on the RS6000. In particular, the crossover point at
which the SPARSE computation runs faster than the COMPRESSED computation occurs at n =
525 on the SPARC IPX and at n = 2,187 on the R56000. Also, for the largest problem, the
speedup of the SPARSE versus the COMPRESSED computation is 10 on the SPARC IPX and
3.5 on the RS6000.

We observe that for both the straightforward and the stripmined COMPRESSED computa-
tions, the inequality (4.6) holds; however, in contrast to the MINPACK-2 problems, p is
not a constant. For the MDG problem, we have 1.4 < A < 1.8 on the SPARC IPX and
1.3 < A < 1.5 on the RS6000. Likewise, for the SPARSE computation inequality (4.8) holds
with 18 < w’ < 22 on the SPARC IPX and 43 < w’ < 49 on the RS6000.

The strip sizes were chosen such that they would result in reasonable memory values. As
was previously explained, stripmining is needed in order for the COMPRESSED computation to
fit in memory, and comes at the cost of an additional (extraneous) function evaluation per
strip. In terms of the effect of stripmining on the runtime of the COMPRESSED computation,
we note that the COMPRESSED plots in Figures 4.4 and 4.5 appear to have three distinct slopes
corresponding to the three computational flavors: (i) straightforward or non-stripmined, (7¢)
stripmined with p, = 16, and (¢i7) stripmined with p;, = 8. As expected, the slope of the

28

RS6000

MOLECULAR DISTANCE GEOMETRY
1200

1000 -

800

WY
WY

Runtime Ratios
(2]
o
o
T

400 -

200

L L L
0 2000 4000 6000 8000 10000 12000
Problem Size

Figure 4.5: Jacobian-to-function runtime ratios on the RS6000. COMPRESSED (dotted),
SPARSE (solid), and graph-coloring (dashed).

line segment corresponding to (7i) is greater than that of (i), because halving the strip
size, doubles the overhead function computations. By virtue of the same overhead effects,
one might expect the slope of the line segment corresponding to (i7) to be greater than that
of (¢). However, the contrary is true. We suspect that this fact is due to the degradation
in runtime performance of the larger non-stripmined problems brought about by excessive
paging.

Finally, we note in Figures 4.4 and 4.5 that the coloring-to-function ratio results—in
like manner to their the MINPACK-2 counterparts—are constant, with the constant factor
being smaller than the corresponding factor for the SPARSE computation.

5 Conclusions

We have shown the effectiveness of the SparsLinC library in conjunction with the ADIFOR
tool for exploiting sparsity in automatic differentiation. The fact that SparsLinC does not
require a priori knowledge about the structure of sparsity in a particular problem, coupled
with the fact that sparsity is exploited transparently, without the need for rewriting code,
makes the ADIFOR/SparsLinC combination a valuable and convenient tool set. It can be
used either for quick prototyping of the sparsity characteristics of a problem or as a means
of getting improved efficiency in sparse derivative computations at very little cost in terms
of program development time.

The ADIFOR/SparsLinC approach reduces the runtime cost of computing gradients of
partially separable functions by as many as three orders of magnitude over the NONSPARSE

29

ADIFOR approach, while imposing modest memory requirements. SparsLinC does not
require a priori knowledge about where and how the partial separability is coded; if it
exists, SparsLinC will exploit the consequent sparsity.

The relative efficiency of SparsLinC’s runtime results in computing sparse Jacobians
as compared with the performance of the compressed Jacobians method is dependent on
whether or not the chromatic number, p, derived from graph-coloring of the Jacobian is
dependent on the problem size, n. (This comparison presupposes the feasibility of a priori
computation of the closure sparsity pattern of the Jacobian needed for the compressed
Jacobian approach.) If p is independent of n, both the ADIFOR/SparsLinC approach
and the ADIFOR/compressed Jacobians approach will run at a constant factor times the
function runtime, with the compressed Jacobian approach typically being the faster of the
two.

If p grows with n, the compressed Jacobians approach will have a linear dependence on n,
which implies much higher runtimes and memory requirements, making ADIFOR /SparsLinC
the clear method of choice in such cases.

Acknowledgments

We thank Jorge Moré for his assistance with the MINPACK-2 problem set, Paul Hovland
and Aaron Ross for their contributions to building early prototypes of SparsLinC, Andrew
Mauer and Tim Knauff for their assistance in debugging SparsLinC, Vitaly Shmatikov for

his assistance with the sparsity characteristics plots, and Zhijun Wu for his assistance with
the MDG problem.

References

[1] B. M. Averick, R. G. Carter, J. J. Moré, and G. L. Xue. The MINPACK-2 test problem
collection. Technical Report ANL/MCS-TM-150, Rev. 1, Mathematics and Computer
Science Division, Argonne National Laboratory, 1992.

[2] Brett Averick, Jorge Moré, Christian Bischof, Alan Carle, and Andreas Griewank.
Computing large sparse Jacobian matrices using automatic differentiation. SIAM Jour-
nal on Scientific Computing, 15(2):285-294, 1994.

[3] M.C. Bartholomew-Biggs, L. Bartholomew-Biggs, and B. Christianson. Optimization
& automatic differentiation in ADA: Some practical experiences. Optimization Methods
& Software, 4(1):47-73, 1994.

[4] Christian Bischof, Ali Bouaricha, Peyvand Khademi, and Jorge Moré. Computing
gradients in large-scale optimization using automatic differentiation. Preprint MCS-
P488-0195, Mathematics and Computer Science Division, Argonne National Labora-
tory, 1995.

[6] Christian Bischof, Alan Carle, George Corliss, Andreas Griewank, and Paul Hovland.
ADIFOR: Generating derivative codes from Fortran programs. Scientific Programming,
1(1):11-29, 1992.

30

[6]

[10]

[11]

[12]

[13]

Christian Bischof, Alan Carle, and Peyvand Khademi. Fortran 77 interface specification
to the SparsLinC library. Technical Report ANL/MCS-TM-196, Mathematics and
Computer Science Division, Argonne National Laboratory, 1994.

Christian Bischof, Alan Carle, Peyvand Khademi, and Andrew Mauer. The ADIFOR
2.0 system for the automatic differentiation of Fortran 77 programs, 1994. Preprint
MCS-P481-1194, Mathematics and Computer Science Division, Argonne National Lab-
oratory, and CRPC-TR94491, Center for Research on Parallel Computation, Rice Uni-
versity. To appear in [EEE Computational Science & Engineering.

Christian Bischof, Alan Carle, Peyvand Khademi, Andrew Mauer, and Paul Hovland.
ADIFOR 2.0 user’s guide. Technical Memorandum ANL/MCS-TM-192, Mathematics

and Computer Science Division, Argonne National Laboratory, 1994. CRPC Technical
Report CRPC-95516-S.

Christian Bischof, George Corliss, Larry Green, Andreas Griewank, Kara Haigler, and
Perry Newman. Automatic differentiation of advanced CFD codes for multidisciplinary
design. Journal on Computing Systems in Engineering, 3(6):625-638, 1992.

Christian Bischof, Larry Green, Kitty Haigler, and Tim Knauff. Parallel calculation of
sensitivity derivatives for aircraft design using automatic differentiation. In Proceed-
ings of the 5th AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis
and Optimization, ATAA 94-4261, pages 73-84. American Institute of Aeronautics and
Astronautics, 1994.

Christian Bischof, Greg Whiffen, Christine Shoemaker, Alan Carle, and Aaron Ross.
Application of automatic differentiation to groundwater transport models. In Alexan-

der Peters, editor, Computational Methods in Water Resources X, pages 173-182, Dor-
drecht, 1994. Kluwer Academic Publishers.

Christian H. Bischof and Moe El-Khadiri. Extending compile-time reverse mode and ex-
ploiting partial separability in ADIFOR. Technical Report ANL/MCS-TM-163, Math-
ematics and Computer Science Division, Argonne National Laboratory, 1992.

Christian H. Bischof, William T. Jones, Andrew Mauer, and Jamshid Samareh. Experi-
ences with the application of the ADIC automatic differentiation tool to the CSCMDO

3-D volume grid generation code. In Proceedings of the 3/th AIAA Aerospace Sciences
Meeting, pages ATAA 96-0716, 1996. To appear.

Ali Bouaricha and Jorge Moré. Impact of partial separability on large-scale optimiza-
tion. Preprint MCS-P487-0195, Mathematics and Computer Science Division, Argonne
National Laboratory, 1995.

Alan Carle, Lawrence Green, Christian Bischof, and Perry Newman. Applications of
automatic differentiation in CFD. In Proceedings of the 25th AIAA Fluid Dynamics
Conference, AIAA Paper 94-2197. American Institute of Aeronautics and Astronautics,
1994.

31

[16]

[27]

Thomas F. Coleman, Burton S. Garbow, and Jorge J. Moré. Software for estimating
sparse Jacobian matrices. ACM Transactions on Mathematical Software, 10(3):329—
345, 1984.

Thomas F. Coleman and Jorge J. Moré. Estimation of sparse Jacobian matrices and
graph coloring problems. SIAM Journal on Numerical Analysis, 20:187-209, 1983.

Laurence C. W. Dixon. Use of automatic differentiation for calculating Hessians and
Newton steps. In Andreas Griewank and George Corliss, editors, Proceedings of the
Workshop on Automatic Differentiation of Algorithms: Theory, Implementation, and
Application, pages 114-125, Philadelphia, 1991. STAM.

Laurence C. W. Dixon, 7. A. Maany, and M. Mohseninia. Automatic differentiation of
large sparse systems. Journal of Fconomic Dynamics and Control, 14(2), 1990.

Andreas Griewank. The chain rule revisited in scientific computing. STAM News, 24,
No. 3, p. 20 & No. 4, p. 8, 1991.

Andreas Griewank, David Juedes, and Jean Utke. ADOL-C, a package for the auto-
matic differentiation of algorithms written in C/C++. ACM Transactions on Mathe-
matical Software, June 1995. To appear.

Andreas Griewank and Philippe L. Toint. On the unconstrained optimization of par-
tially separable objective functions. In M. J. D. Powell, editor, Nonlinear Optimization
1981, pages 301-312, London, 1981. Academic Press.

Jim E. Horwedel. GRESS: A preprocessor for sensitivity studies on Fortran programs.
In Andreas Griewank and George F. Corliss, editors, Automatic Differentiation of Algo-
rithms: Theory, Implementation, and Application, pages 243-250. STAM, Philadelphia,
1991.

J. J. Moré and Z. Wu. Global continuation for distance geometry problems. Technical
Report MCS-P505-0395, Argonne National Laboratory, 1995.

Garry N. Newsam and John D. Ramsdell. Estimation of sparse Jacobian matrices.
SIAM Journal on Algebraic and Discrete Methods, 4(3):404-418, 1983.

Seon Ki Park, Kelvin Droegemeier, Christian Bischof, and Tim Knauff. Sensitivity
analysis of numerically-simulated convective storms using direct and adjoint methods.
In Preprints, 10th Conference on Numerical Weather Prediction, Portland, Oregon,
pages 457-459. American Meterological Society, 1994.

Nicole Rostaing, Stephane Dalmas, and Andre Galligo. Automatic differentiation in
Odyssee. Tellus, 45a(5):558-568, October 1993.

32

